Publications

Questions about a publication? Contact me.

  1. [1]

    A. Christiansen, B. Gom, D. Naylor, A. Cournoyer*, M. Larouche, É. Carbonneau, H. Bourque, and N. Milaniak. “Cryogenic assessment of an absorptive baffle for capturing stray photons from the PRIMA FIRESS laser displacement metrology system”. In: Optica Sensing Congress 2025 (AIS, FTS, HISE, Sensors, ES, QSM), 2025. Long Beach, California, USA. Submitted

  2. [2]

    M. Buchan, D. Naylor, B. Gom, A. Christiansen, A. Anderson, A. Cournoyer, É. Carbonneau, M. Larouche, H. Bourque, P. Ade, and C. Tucker. “End-to-end validation of a cryogenic far-infrared post-dispersed polarizing Fourier transform spectrometer”. In: Optica Sensing Congress 2025 (AIS, FTS, HISE, Sensors, ES, QSM), 2025. Long Beach, California, USA. Submitted

  3. [3]

    A. Christiansen, D. Naylor, and B. Gom. “A cryogenic multiaxis sinusoidal frequency modulation range-resolved laser interferometer for far-infrared space-based astronomical instrumentation”. Cryogenics, 2025. Draft

  4. [4]

    M. Buchan, D. Naylor, B. Gom, A. Christiansen, A. Anderson, A. Cournoyer, É. Carbonneau, H. Bourque, P. Ade, and C. Tucker. “Design and end-to-end validation of a cryogenic far-infrared post-dispersed polarizing Fourier transform spectrometer”. Journal of Astronomical Telescopes, Instruments, and Systems, 2025. Submitted

  5. [5]

    A. Christiansen, D. Naylor*, M. Buchan, and B. Gom. “A novel laser frequency stabilization technique for FMCW systems”. In: Photonic Instrumentation Engineering XII, 13373:133730C, 2025. San Francisco, California, USA. DOI: 10.1117/12.3040732. Presentation

  6. [6]

    A. Christiansen. “A cryogenic multiaxis range-resolved laser interferometer”. Doctoral thesis, University of Lethbridge, 2024. Handle: 10133/6671.

  7. [7]

    A. Anderson, D. Naylor, B. Gom, M. Buchan, A. Christiansen, and I. Veenendaal. “Development and validation of a cryogenic far-infrared diffraction grating spectrometer used to post-disperse the output from a Fourier transform spectrometer”. Review of Scientific Instruments, 95(1):015116, 2024. DOI: 10.1063/5.0177603.

  8. [8]

    M. Buchan*, D. Naylor, B. Gom, A. Christiansen, A. Anderson, A. Cournoyer, É. Carbonneau, and M. Larouche. “Development and integration of a cryogenic far-infrared post-dispersed polarizing Fourier transform spectrometer”. In: Optica Sensing Congress 2023 (AIS, FTS, HISE, Sensors, ES), pp. FM4B.4, 2023. Munich, Bavaria, Germany. DOI: 10.1364/FTS.2023.FM4B.4. Presentation

  9. [9]

    A. Cournoyer*, H. Bourque, É. Carbonneau, P. Gilbert, S. Houle, J.-A. Boulet, I. Silversides, F. Grandmont, D. Naylor, B. Gom, A. Christiansen, and M. Buchan. “Cryogenic testing and performance characterization of a novel stiffness-compensated, reactionless scan mechanism for a far-infrared post-dispersed polarizing Fourier transform spectrometer”. In: Optica Sensing Congress 2023 (AIS, FTS, HISE, Sensors, ES), pp. FM4B.5, 2023. Munich, Bavaria, Germany. DOI: 10.1364/FTS.2023.FM4B.5. Presentation

  10. [10]

    A. Christiansen*, M. Popelka, B. Gom, D. Naylor, and A. Stolov. “Characterization of optical fiber at cryogenic temperatures”. In: Optical Components and Materials XX, 12417:124170Z, 2023. San Francisco, California, USA. DOI: 10.1117/12.2647281. Poster

  11. [11]

    A. Christiansen*, D. Naylor, and B. Gom. “Multiaxis applications of a cryogenic range-resolved laser interferometer”. In: Photonic Instrumentation Engineering X, 12428:124280Z, 2023. San Francisco, California, USA. DOI: 10.1117/12.2647283. Presentation

  12. [12]

    D. Naylor*, B. Gom, A. Anderson, A. Christiansen, A. Cournoyer, F. Grandmont, B. Louwerse, P. Ade, W. Jellema, B. Lap, and S. Withington. “Development of a cryogenic far-infrared post-dispersed polarising Fourier transform spectrometer”. In: 47th International Conference on Infrared, Millimeter, and Terahertz Waves, pp. 1–2, 2022. Delft, South Holland, Netherlands. DOI: 10.1109/IRMMW-THz50927.2022.9896015. Poster

  13. [13]

    A. Anderson*, D. Naylor, B. Gom, I. Veenendaal, A. Christiansen, W. Jellema, and P. Ade. “Determining the efficiency of a cryogenic far-infrared diffraction grating spectrometer used as a post-dispersing module for a high-resolution spectrometer”. In: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, 12190:121902C, 2022. Montréal, Québec, Canada. DOI: 10.1117/12.2628259. Poster

  14. [14]

    D. Naylor*, B. Gom, A. Anderson, A. Huber, A. Christiansen, M. Buchan, A. Cournoyer, F. Grandmont, B. Louwerse, P. Ade, W. Jellema, B. Lap, and S. Withington. “Development of a cryogenic far-infrared post-dispersed polarizing Fourier transform spectrometer”. In: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI, 12190:121900R, 2022. Montréal, Québec, Canada. DOI: 10.1117/12.2629570. Presentation Poster

  15. [15]

    A. Christiansen*, D. Naylor, A. Anderson, and B. Gom. “A cryogenic FMCW range-resolved laser interferometer: challenges and applications”. In: Photonic Instrumentation Engineering IX, 12008:25–38, 2022. San Francisco, California, USA. DOI: 10.1117/12.2607894. Presentation

  16. [16]

    D. Naylor*, B. Gom, A. Huber, A. Anderson, A. Christiansen, W. Jellema, B. Lap, I. Veenendaal, A. Cournoyer, F. Grandmont, T. Fulton, S. Gunuganti, and P. Ade. “Development of a cryogenic far-infrared post-dispersed polarizing Fourier transform spectrometer”. In: OSA Optical Sensors and Sensing Congress 2021 (AIS, FTS, HISE, SENSORS, ES), pp. FM5C.3, 2021. Washington, DC, USA. DOI: 10.1364/FTS.2021.FM5C.3. Presentation

  17. [17]

    D. Naylor*, B. Gom, A. Huber, A. Anderson, A. Christiansen, W. Jellema, B. Lap, I. Veenendaal, A. Cournoyer, F. Grandmont, T. Fulton, S. Gunuganti, and P. Ade. “Development of a cryogenic far-infrared post-dispersed polarizing Fourier transform spectrometer: A demonstrator for the SPICA SAFARI instrument”. In: Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, 11453:114530K, 2020. Virtual. DOI: 10.1117/12.2561100. Presentation

  18. [18]

    A. Christiansen. “Cryogenic fibre-fed laser metrology”. Master's thesis, University of Lethbridge, 2020. Handle: 10133/5792.

  19. [19]

    I. Veenendaal, D. Naylor, B. Gom, A. Christiansen, W. Jellema, C. Feenstra, M. Ridder, M. Eggens, and P. Ade. “An angle-scanned cryogenic Fabry-Pérot interferometer for far-infrared astronomy”. Review of Scientific Instruments, 91(8):083108, 2020. DOI: 10.1063/5.0012432.

  20. [20]

    D. Naylor*, I. Veenendaal, T. Fulton, B. Gom, A. Christiansen, W. Jellema, C. Feenstra, M. Eggens, and P. Ade. “First light results from a novel cryogenic Fabry-Pérot interferometer”. In: 44th International Conference on Infrared, Millimeter, and Terahertz Waves, pp. 1-2, 2019. Paris, Île-de-France, France. DOI: 10.1109/IRMMW-THz.2019.8874094. Presentation

  21. [21]

    L. Spencer*, A. Christiansen, I. Veenendaal, S. Gunuganti, D. Naylor, B. Gom, G. Sitwell, N. Zobeiry, and A. Poursartip. “Evaluation of composite materials at cryogenic temperatures”. In: 11th Canadian International Conference on Composite Materials – CANCOM 2019, 2019. Kelowna, BC, Canada. Presentation

  22. [22]

    A. Christiansen*, D. Naylor, I. Veenendaal, and B. Gom. “A frequency-modulated laser interferometer for nanometer-scale position sensing at cryogenic temperatures”. In: Photonic Instrumentation Engineering VI, 10925:1092514, 2019. San Francisco, California, USA. DOI: 10.1117/12.2508900. Presentation

  23. [23]

    L. Spencer*, I. Veenendaal, D. Naylor, B. Gom, G. Sitwell, A. Huber, A. Christiansen, C. Benson, S. Gunuganti, M. Jones, R. Day, D. Walker, N. Zobeiry, and A. Poursartip. “Composite material evaluation at cryogenic temperatures for applications in space-based far-infrared astronomical instrumentation”. In: Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, 10706:107063R, 2018. Austin, Texas, USA. DOI: 10.1117/12.2314211. Poster

  24. [24]

    I. Veenendaal*, D. Naylor, B. Gom, T. Fulton, A. Christiansen, W. Jellema, M. Eggens, and P. Ade. “A novel design for a cryogenic angle-scanned Fabry-Pérot interferometer”. In: Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, 10706:107061C, 2018. Austin, Texas, USA. DOI: 10.1117/12.2314107. Presentation

  25. [25]

    D. Naylor*, I. Veenendaal, B. Gom, and A. Christiansen. “A fiber-fed laser interferometer for optical metrology at cryogenic temperatures”. In: Photonic Instrumentation Engineering V, 10539:105390T, 2018. San Francisco, California, USA. DOI: 10.1117/12.2287466. Presentation


© 2025 Adam Christiansen